Skip to main content

Predictors of suicide attempt within 30 days of first medically documented major depression diagnosis in U.S. army soldiers with no prior suicidal ideation



Understanding mental health predictors of imminent suicide attempt (SA; within 30 days) among soldiers with depression and no prior suicide ideation (SI) can inform prevention and treatment. The current study aimed to identify sociodemographic and service-related characteristics and mental disorder predictors associated with imminent SA among U.S. Army soldiers following first documented major depression diagnosis (MDD) with no history of SI.


In this case-control study using Army Study to Assess Risk and Resilience in Servicemembers (STARRS) administrative data, we identified 101,046 active-duty Regular Army enlisted soldiers (2010–2016) with medically-documented MDD and no prior SI (MDD/No-SI). We examined risk factors for SA within 30 days of first MDD/No-SI using logistic regression analyses, including socio-demographic/service-related characteristics and psychiatric diagnoses.


The 101,046 soldiers with documented MDD/No-SI were primarily male (78.0%), < 29 years old (63.9%), White (58.1%), high school-educated (74.5%), currently married (62.0%) and < 21 when first entering the Army (56.9%). Among soldiers with MDD/No-SI, 2,600 (2.6%) subsequently attempted suicide, 16.2% (n = 421) within 30 days (rate: 416.6/100,000). Our final multivariable model identified: Soldiers with less than high school education (χ23 = 11.21, OR = 1.5[95%CI = 1.2–1.9]); combat medics (χ22 = 8.95, OR = 1.5[95%CI = 1.1–2.2]); bipolar disorder (OR = 3.1[95%CI = 1.5–6.3]), traumatic stress (i.e., acute reaction to stress/not PTSD; OR = 2.6[95%CI = 1.4–4.8]), and “other” diagnosis (e.g., unspecified mental disorder: OR = 5.5[95%CI = 3.8-8.0]) diagnosed same day as MDD; and those with alcohol use disorder (OR = 1.4[95%CI = 1.0-1.8]) and somatoform/dissociative disorders (OR = 1.7[95%CI = 1.0-2.8]) diagnosed before MDD were more likely to attempt suicide within 30 days. Currently married soldiers (χ22 = 6.68, OR = 0.7[95%CI = 0.6–0.9]), those in service 10 + years (χ23 = 10.06, OR = 0.4[95%CI = 0.2–0.7]), and a sleep disorder diagnosed same day as MDD (OR = 0.3[95%CI = 0.1–0.9]) were less likely.


SA risk within 30 days following first MDD is more likely among soldiers with less education, combat medics, and bipolar disorder, traumatic stress, and “other” disorder the same day as MDD, and alcohol use disorder and somatoform/dissociative disorders before MDD. These factors identify imminent SA risk and can be indicators for early intervention.

Peer Review reports


The U.S. Army suicide rate increased substantially during the Iraq and Afghanistan wars, surpassing the age- and sex-adjusted civilian rate in 2008. Rates of suicidal behavior have since remained elevated [1,2,3,4]. Identification of factors predicting suicide attempt (SA) can improve clinical care for at-risk soldiers, particularly those not reporting suicidal ideation (SI) and therefore not identified at imminent risk. Much epidemiologic research examining SA risk uses survey data [5,6,7,8]. However, it is specifically important to consider SA risk in those with medically-documented psychiatric diagnoses [9], because they have been detected in the health care system. This information is critical for clinicians who, based on knowledge of patients’ current and past mental health, can identify at-risk patients who may benefit from early and rapid intervention.

Major depressive disorder (MDD) has consistently been associated with suicidal behavior [7, 10, 11]. Health care records of active-duty soldiers are generally comprehensive and capture all visits, offering unique opportunities to relate MDD to imminent (i.e., within 30 days) SA risk [12]. Predictors of imminent SA are particularly important because most individuals diagnosed with MDD do not attempt suicide [10, 13], and at-risk individuals may be difficult to identify, especially when SI is not detected.

Previous research using Army and Department of Defense (DoD) administrative data found that SAs are associated with socio-demographic characteristics [14], Army career characteristics, and psychiatric diagnosis [8, 15]. However, it is not known whether these factors distinguish soldiers with documented MDD who make subsequent SAs. Army studies using survey and administrative data suggest that transition from ideation to attempt is often rapid [16, 17], with most SAs occurring within one year [8, 18]. However, examination of transition from initial MDD to SA in soldiers without prior documented SI has not been examined using health care information.

Individuals with MDD often have comorbid psychiatric disorders [19]. Identifying co-occurring diagnoses that increase SA risk can distinguish who will rapidly transition to SA after initial MDD diagnosis. MDD and comorbid anxiety, posttraumatic stress (PTSD), substance, and personality disorders have been associated with suicide risk [20, 21]. However, most studies examining SA risk among depressed individuals focus on lifetime diagnoses or SA predictors over years, do not identify SA predictors at time of first depression diagnosis, and do not examine risk factors for rapid transition to SA particularly among those without SI.

Using administrative data from the Army Study to Assess Risk and Resilience in Servicemembers (STARRS) [22], this study examines imminent SA risk in soldiers with MDD and no documented SI (same-day or at any time during service before MDD diagnosis; MDD/No-SI). We identify the proportion of soldiers with depression who subsequently attempt suicide, the period of highest risk following first MDD diagnosis, and then examine socio-demographic/service-related characteristics and psychiatric diagnoses predicting SA within 30 days of MDD diagnosis.



The STARRS Historical Administrative Data Study (HADS) integrates 38 Army and DoD administrative data systems capturing medically-documented suicidal events and medical, legal, and personnel information during military service. The HADS includes individual-level person-month records for all Regular Army soldiers between January 1, 2010-December 31, 2016 [23]. Analysis of de-identified data was approved by Institutional Review Boards of STARRS-collaborating institutions and all methods were carried out in accordance with relevant guidelines and regulations.

The HADS contains administrative records for 918,281 Regular enlisted Army soldiers during the study period (excluding activated Army National Guard/Reserve). The analytic sample consisted of 101,046 Regular enlisted soldiers who were seen by a health care provider in a medical setting and received their first medically-documented diagnosis of MDD/no-SI (diagnosed before or same-day of depression diagnosis).

Measures (Supplement includes full description)

SI and SA Soldiers with MDD/No-SI and those with SA within 30 days of first MDD were identified. Soldiers attempting suicide within 30 days of MDD diagnosis were ‘cases’ and those who did not were ‘controls.’ Incidence of subsequent SA within the study period (i.e., maximum seven years following MDD) was also identified. Classification used administrative records from: the DoDSER [24], a DoD-wide surveillance mechanism, and ICD-9-CM V62.84 and ICD-10-CM R45.851 codes (SI), ICD-9-CM E950-E958 (self-inflicted poisoning/injury with suicidal intent) and ICD-10-CM X71-X83 (intentional self-harm), T36-T65, T71 (where 5th and 6th characters indicate intentional self-harm), and T14.91 (SA) codes [25] from health care information from military and civilian treatment facilities, combat operations, and aeromedical evacuations (Table S1, online: SI was excluded based on either having an ICD-9/ICD-10 code or a DoDSER record indicating SI.

Socio-demographic and service-related characteristics

Personnel records were used to construct socio-demographic (gender, current age, race/ethnicity, education, marital status) and service-related variables (age at Army entry, time in service, deployment status, demotion, delayed promotion, and military occupation; Table S2).

Psychiatric diagnosis

Administrative medical records identified 26 documented psychiatric diagnostic categories defined by aggregated ICD-9-CM and ICD-10-CM codes and ICD-9-CM V and ICD-10-CM Z stressors/adversities and marital problems codes (Table S3). Each diagnostic category was coded into two time periods: occurring same-day as first MDD diagnosis and occurring any time during service before first MDD diagnosis.

Statistical analysis

Analyses were conducted using SAS version 9.4 [26]. Associations of all socio-demographic/service-related characteristics and psychiatric diagnoses with SA within 30 days of depression diagnosis were examined using univariable logistic regression. Multivariable logistic regression analyses were conducted for each psychiatric diagnosis, adjusting for socio-demographics/service-related characteristics. A final model was conducted including diagnoses significant in the separate multivariable analyses. This model-building approach was based on purposeful factor selection to identify the most parsimonious model including all relevant predictors [26]. The significance threshold for all analyses was p < .05, with selected variables for the final model identified by this criterion [27].

Logistic regression coefficients were exponentiated to obtain odds ratios (OR) and 95% confidence intervals (CI). To account for secular trends, logistic regression equations controlled for calendar month and year. Coefficients of other predictors can consequently be interpreted as averaged within-month associations based on the assumption that other predictors’ effects do not vary over time. Diagnostic performance of the final model using risk prediction was evaluated calculating positive predictive value (PPV) among the 10% of participants at highest predicted risk. Population-attributable risk proportion (PARP) [28] was calculated to identify the proportion of observed SAs that would not occur if effects attributable to specific mental disorders were reduced to reference level (i.e., from high risk level (top 10%) based on PPV to medium risk level (middle 30%)), assuming that model coefficients represent causal effects of the predictors.


Soldiers with documented MDD/No-SI (n = 101,046) were primarily male (78.0%), < 29 years (63.9%), White (58.1%), high school-educated (74.5%), currently married (62.0%), and < 21 when first entering Army (56.9%) (Table 1). Approximately one-third (31.1%) had 5–10 years of service, 60.5% had previously deployed, and 20.5% were assigned to combat arms. The five most common psychiatric diagnostic categories among soldiers with MDD/No-SI were: stressors/adversities and marital problems (46.6% before day of depression diagnosis); tobacco use disorder (41.7% before depression); anxiety disorder (41.2% before depression); adjustment disorder (25.2% before depression); and dysthymic disorder/neurasthenia/depression NOS (24.6% before depression)) (Table S4).

Table 1 Association of socio-demographic and service-related characteristics of active-duty Regular U.S. Army enlisted soldiers with documented suicide attempt within 30 days following initial major depression diagnosis and no prior suicidal ideation

Among the soldiers with first documented MDD/No-SI, 2,600 (2.6%) subsequently attempted suicide (i.e., maximum seven years following MDD). Nearly 50% (n = 1287) of SAs occurred within 180 days of MDD diagnosis (Fig. 1), with 16.2% (n = 421) occurring within the first 30 days (or 1/3 of those attempting suicide within 180 days). Figure 2 shows the hazard function indicating highest SA risk in the second month after MDD (rate:3.2/1,000 soldiers) with incrementally decreasing risk over time. This rate is > 10 times higher than the annual SA rate previously reported [29]. Examination by day showed the first day after MDD/No-SI diagnosis with highest daily risk (67.3/100,000 soldiers).

Fig. 1
figure 1

Cumulative percent of suicide attempts across days since first documented major depression diagnosis

Fig. 2
figure 2

Risk of suicide attempt among Regular Army-enlisted soldiers following first documented major depression diagnosis

Socio-demographic and service-related risk factors

In univariable analyses, younger soldiers were more likely to attempt suicide. Soldiers < 21 were over six times more likely than those 30–34 to attempt suicide (χ25 = 163.91, OR = 6.1[95%CI = 4.0-9.3]) (Table 1). SA was more likely among soldiers with less than high school education (χ23 = 34.58, OR = 1.6[95%CI = 1.3-2.0]), and less likely if soldiers were Black and Asian (χ24 = 10.12; OR = 0.8[95%CI = 0.6-1.0] and OR = 0.4[95%CI = 0.2–0.8], respectively). Gender was not associated with SA risk.

Soldiers who were 25 + years when entering the Army (χ22 = 17.00, OR = 0.6[95%CI = 0.4–0.9]), were previously deployed (χ22 = 75.42, OR = 0.4[95%CI = 0.3–0.5]), and were promoted 2 + months late (χ23 = 141.23, OR = 0.6[95%CI = 0.4–0.9]) were less likely to attempt suicide. Soldiers with fewer years of service (χ23 = 149.43, 1–2 years: OR = 2.8[95%CI = 2.2–3.6]; 3–4 years: OR = 1.4[95%CI = 1.1–1.9]), were demoted in past year (χ22 = 5.99, OR = 1.5[95%CI = 1.1–2.2]), and were combat arms or combat medics (χ22 = 14.17; OR = 1.5[95%CI = 1.2–1.8] and OR = 1.5[95%CI = 1.1–2.1], respectively) were more likely to attempt suicide.

Psychiatric diagnosis

Univariable analyses indicated that soldiers diagnosed with bipolar disorder same-day as first MDD diagnosis were > 7 times more likely to attempt suicide within 30 days (OR = 7.1[95%CI = 3.6–13.8]) (Table 2; Table S4). A same-day diagnosis from “other” category was also associated with increased SA odds (OR = 10.3[95%CI = 7.3–14.5]). The most common diagnosis in “other” category was ICD-9-CM code 300.9 (unspecified nonpsychotic mental disorder), diagnosed in 77% (n = 746/969) of soldiers with “other” diagnosis and 89.2% (n = 33/37) of suicide attempters with “other” diagnosis. Additional disorders diagnosed same-day as depression and associated with SA risk were personality disorder (OR = 4.3[95%CI = 2.2–8.3]), non-affective psychosis (OR = 3.5[95%CI = 1.8–6.7]), traumatic stress (i.e., acute reaction to stress/not PTSD; OR = 3.3[95%CI = 1.8–3.3]), drug-induced mental disorders (OR = 2.6[95%CI = 1.1–6.2]), dysthymic disorder/neurasthenia/depression NOS (OR = 2.4[95%CI = 1.7–3.4]), adjustment disorder (OR = 2.1[95%CI = 1.4–3.1]), tobacco use disorder (OR = 1.7[95%CI = 1.2–2.4]), stressors/adversities and marital problems (OR = 1.4[95%CI = 1.0-1.8]), and anxiety disorder (OR = 1.3[95%CI = 1.0-1.7]). Alcohol use disorder, diagnosed both same-day (OR = 1.9[95%CI = 1.3–2.6]) and before depression (OR = 1.4[95%CI = 1.1–1.8]), was also associated with SA risk.

Table 2 Association of psychiatric diagnoses of active-duty Regular U.S. Army enlisted soldiers with documented suicide attempt within 30 days following initial major depression diagnosis

Soldiers were less likely to attempt suicide if diagnosed with the following disorders before their depression diagnosis: anxiety disorder (OR = 0.7[95%CI = 0.6–0.9]); PTSD (OR = 0.7[95%CI = 0.5–0.9]); stressors/adversities and marital problems (OR = 0.7[95%CI = 0.6–0.8]); sexual disorders (OR = 0.2[95%CI = 0.1–0.5]); and sleep disorders (OR = 0.7[95%CI = 0.6-1.0]. Soldiers were also less likely to attempt suicide if they were diagnosed with sleep disorder on the same day (OR = 0.3[95%CI = 0.1–0.8]).

Multivariable analyses

A multivariable model with socio-demographic/service-related characteristics indicated SAs within 30 days were more likely if soldiers with MDD/No-SI were < 21 (χ25 = 7.8, OR = 2.4[95%CI = 1.2–4.9]), completed less than high school (χ23 = 13.2, OR = 1.5[95%CI = 1.2–1.9]), had been demoted before the past year (χ22 = 5.7, OR = 1.5[95%CI = 1.0-2.1]), and were combat arms or combat medics (χ22 = 9.6; OR = 1.4[95%CI = 1.1–1.7] and OR = 1.5[95%CI = 1.0-2.1], respectively) (Table S5). SAs were less likely if soldiers were currently married (χ22 = 8.1, OR = 0.7[95%CI = 0.6–0.9]) and had 10 + years of military service (χ23 = 10.5, OR = 0.4[95%CI = 0.2–0.7]).

A series of separate multivariable models examining each specific psychiatric diagnosis, adjusting for socio-demographic/service-related variables, indicated that soldiers diagnosed with bipolar disorder same-day as depression were > 5 times more likely to attempt suicide within 30 days (OR = 5.3[95%CI = 2.7–10.4]). Further, those diagnosed with a mental disorder identified as “other” the same day were seven times as likely to attempt suicide (OR = 7.0[95%CI = 4.9–9.9]) (Table 2 and S6). Additional diagnoses given same-day as depression and associated with SA included: personality disorders (OR = 3.2[95%CI = 1.7–6.3]), tobacco use disorder (OR = 1.7[95%CI = 1.2–2.3]), non-affective psychosis (OR = 2.6[95%CI = 1.3-5.0]), dysthymic disorder/neurasthenia/depression NOS (OR = 1.8[95%CI = 1.3–2.5]), adjustment disorder (OR = 1.6[95%CI = 1.1–2.4]), alcohol use disorder (OR = 1.7[95%CI = 1.2–2.4]), anxiety disorders (OR = 1.4[95%CI = 1.1–1.7]), and stressors/adversities and marital problems (OR = 1.3[95%CI = 1.0-1.8]). Soldiers with sleep disorder diagnosed same-day as depression were less likely to attempt suicide (OR = 0.4[95%CI = 0.1-1.0]).

Soldiers with a documented somatoform/dissociative disorder (OR = 1.7[95%CI = 1.0-2.8]), drug-induced mental disorders (OR = 1.7[95%CI = 1.0-2.9]), and alcohol use disorder (OR = 1.5[95%CI = 1.2-2.0]) before depression were also more likely to attempt suicide.

The final model included all socio-demographic/service-related characteristics and the 15 psychiatric disorders diagnosed same-day and before depression diagnosis that were significant in the separate multivariable models (Table 3). In this model, having less than high school education (χ23 = 11.2; OR = 1.5[95%CI = 1.2–1.9]) and being a combat medic (χ22 = 9.0; OR = 1.5[95%CI = 1.1–2.2]) were associated with greater SA risk, and being currently married (χ22 = 6.7; OR = 0.7[95%CI = 0.6–0.9]) and in service 10 + years (χ23 = 10.1; OR = 0.4[95%CI = 0.2–0.7]) were associated with lower risk. Same-day diagnosis of bipolar disorder (OR = 3.1[95%CI = 1.5–6.3]), traumatic stress (OR = 2.6[95%CI = 1.4–4.8]), and “other” diagnosis (OR = 5.5[95%CI = 3.8-8.0]), and prior alcohol use disorder (OR = 1.4[95%CI = 1.0-1.8]) and somatoform/dissociative disorders (OR = 1.7[95%CI = 1.0-2.8]) diagnoses continued to be associated with increased SA risk. Same-day sleep disorder diagnosis (OR = 0.3[95%CI = 0.1–0.9]) was associated with lower risk. Ten soldiers with MDD/No-SI died by suicide within 30 days. When we added soldier deaths to our cases, findings in our final model were unchanged.

Table 3 Multivariable associations of psychiatric diagnosis in active-duty Regular U.S. Army enlisted soldiers with documented suicide attempt within 30 days following initial major depression diagnosis and no prior suicidal ideationa

Using predicted probabilities from this model, the 10% of participants with highest predicted SA risk included 37.1% of participants with SA (sensitivity = 37.1%). The PARP based on our final model was 25.2%, suggesting SA might be reduced by as much as one-quarter if we could intervene with this group and reduce their risk from high to medium risk level.


Identifying individuals at imminent SA risk is a difficult and important clinical task when depression is diagnosed. This is especially challenging among individuals with MDD when SI is not detected during evaluation. The current study’s focus on factors distinguishing soldiers with MDD/No-SI who attempt suicide within 30 days identifies targets for clinicians providing care at the time of first depression diagnosis. This focus can also help us understand progression from depression diagnosis to SA by identifying lifetime and current mental disorder diagnoses specifically related to rapid transition from MDD to SA. This is particularly important in the military, given that suicide has been increasing, despite efforts to reduce its prevalence. The STARRS HADS provides a unique opportunity to examine comprehensive administrative medical records during soldiers’ time in service, which has not been similarly explored in civilian samples.

In this study, 2.6% of soldiers with MDD/No-SI subsequently attempted suicide, with 16.2% of attempts occurring within 30 days of first depression diagnosis. SA risk was highest early after depression diagnosis and decreased over time, highlighting the importance of risk assessment and identifying those at high SA risk at initial depression diagnosis.

Soldiers with less than high school education and combat medics were at increased risk of imminent SA. In contrast, currently married soldiers and those in service 10 + years were less likely to attempt. Similar demographic [4, 29] and service-related findings [15, 29, 30] have been identified. Combat medics are at elevated SA risk during first year of service [30], possibly associated with advanced training and performance demands. Combat medics were also identified at high SA risk within 30 days after SI diagnosis [16], further emphasizing need for attention to SA prevention among this group. Of importance, our sample differs from this previous study examining the 2004–2009 period, further informing risk in combat medics by identifying rapid transition to SA among medics with depression.

Contrary to research indicating overall population-level higher SA risk among female soldiers [15, 31], women with depression were not more likely to attempt suicide within 30 days. Given that depression is more common in women in both civilian [32] and military [33, 34] populations, further examination of psychiatric disorders associated with SA among Army women with various medically-documented diagnoses may clarify this relationship.

In this study, five psychiatric diagnoses were associated with attempt. Soldiers diagnosed with bipolar disorder, traumatic stress, and “other” disorder (identified among most soldiers in this diagnostic category as unspecified nonpsychotic mental disorder; Table S3) same-day as their first depression diagnosis, and those diagnosed with alcohol use disorder and somatoform/dissociative disorders before depression diagnosis, were more likely to attempt suicide within 30 days. The “other” diagnosis suggests that disorder-related symptoms, perhaps acute stress symptoms not specified nor meeting full criteria for a diagnosis, may be indicating the acute process and disorganized symptom pattern underlying rapid transitions to SA. These diagnostic categories should heighten clinical concern, and may reflect different levels of acute or chronic emotional dysregulation and presence of acute stressors.

Similar to our findings, other studies report that individuals with bipolar disorder who attempt suicide are more likely to experience a current depressive (or mixed state) episode [35]. Aggression and irritability predict SA among individuals with bipolar disorder [35] and often characterize agitated depression, reported as the highest-risk condition for suicidal behaviors [36]. Patients with bipolar disorder are most likely to attempt suicide during severe, pure, or mixed depressive episodes (78–89%) [36]. Patients with rapid cycling are at 54% higher SA risk [37]. Further consideration of related dimensional categories, including anger, irritability, and emotion dysregulation, may aid SA risk identification.

Traumatic stress (i.e., acute reaction to stress), but not PTSD, was associated with imminent SA risk. This acute stress response indicator suggests a recent life stressor and substantial symptom response. Our study did not examine specific life events/transitions (e.g., new assignments, transitions out of training, stressful duty assignments) occurring within 30 days, an important area for future study of rapid transition to SA.

Somatoform-related and/or dissociative disorders diagnoses before depression diagnosis were also associated with increased SA risk. Disorders characterized by somatic symptoms were associated with SAs in 13–67% of participants with somatic disorders [38]. Individuals seeking treatment for somatic symptoms often seek care from non-psychiatric providers [38, 39]. SA risk is noted among individuals with somatoform disorders who develop mood disorders [38]. Identifying the role of medication prescribed for physical symptoms and hopelessness associated with unresolved medical complaints may aid in understanding risk. Dissociative disorders, defined by another disorganizing set of symptoms seen with acute emotional dysregulation, have been associated with SA even when controlling for PTSD [40]. Dissociative symptoms and suicidal behaviors may reflect emotional dysregulation [41]. Dissociation is also related to problematic alcohol use in veterans [42], and associated in this study with increased imminent SA risk when diagnosed before depression.

Several limitations should be considered when interpreting study findings. First, this study used administrative records. Thus, identified cases are subject to classification/coding errors and limited to events receiving medical attention. Although the extent to which attempts are accurately captured in soldiers’ medical records, similar to civilian care settings, cannot be conclusively identified, a substantial number of at-risk soldiers were documented. Future analyses of STARRS survey data linked to respondents’ administrative records can clarify frequency of unidentified suicide attempts during service. Our study data focus on the 2010–2016 period; therefore, findings may not generalize to other time periods. Future research that replicates findings using different military cohorts and/or registries is recommended, and should include Army National Guard/Reserve soldiers and veterans. Research would also benefit from examination of the reasons for increased risk of suicide attempt among soldiers, including military-specific occupational risks and access to firearms, which are of public health importance.

Importantly, this study identified factors associated with acute SA risk among soldiers when first diagnosed with MDD/No-SI, highlighting the significance of rapid transition to SA and possible need for clinical intervention or intensive follow-up. Notably, given that only < 2% of studies examining suicide specifically focus on imminent risk factors [43], future research should consider contributions of specific mental disorders in the context of different risk time frames to better understand rapidly-developing SA.


Soldiers with MDD/No-SI are already identified in the health care system and therefore can be offered evidence-based interventions tailored to their risks. The current study findings are important in identifying those at greatest risk, and inform timely and appropriate clinical decisions and interventions. Those who attempt within 30 days of a depression diagnosis include soldiers with five diagnoses: alcohol use disorder or somatoform or dissociative disorder before depression diagnosis, or same-day comorbid bipolar disorder, traumatic stress, or “other” disorder diagnoses. Combat medics and those with less education are also at imminent SA risk. The PARP of 25.2% indicates that if, with appropriate treatment or intervention, risk could be reduced to medium risk level, SAs would be reduced by as much as 25.2%. Future research should examine contributions of treatment and treatment-related factors in altering transition from first depression diagnosis to SA and develop predictive algorithms as clinical assistance tools to better identify soldiers with MDD/No-SI at increased SA risk.

Data availability

The datasets generated and/or analyzed during the current study are not publicly available, but limited public access to Army STARRS survey data can be requested through the Interuniversity Consortium for Political and Social Research (ICPSR) at the University of Michigan (



Confidence interval


Department of Defense


Department of Defense Suicide Event Report


Historical Administrative Data Study


Major depressive disorder


Major depressive disorder with no history of suicidal ideation (diagnosed before or same day of depression diagnosis)


Odds ratio


Population-attributable risk proportion


Positive predictive value


Posttraumatic stress disorder


Suicide attempt


Suicidal ideation


Army Study of Assess Risk and Resilience in Servicemembers


  1. Black SA, Gallaway MS, Bell MR, Ritchie EC. Prevalence and risk factors associated with suicides of Army soldiers 2001–2009. Mil Psychol. 2011;23(4):433–51.

    Google Scholar 

  2. Griffin BA, Grimm GE, Smart R, Ramchand R, Jaycox LH, Ayer L et al. Comparing the Army’s suicide rate to the general U.S. population: Identifying suitable characteristics, data sources, and analytic approaches. RAND Corporation: Santa Monica, CA; 2020. Accessed 21 February 2023.

  3. Kenney CM. Active-duty suicide rate hit record high in 2020. Defense One; 2020. Accessed 26 July 2022.

  4. Ursano RJ, Kessler RC, Heeringa SG, Cox KL, Naifeh JA, Fullerton CS, et al. Nonfatal suicidal behaviors in U.S. Army administrative records, 2004–2009: results from the Army study to assess risk and resilience in servicemembers (Army STARRS). Psychiatry. 2015;78(1):1–21.

    Article  PubMed  Google Scholar 

  5. Kessler RC, Borges G, Walters EE. Prevalence of and risk factors for lifetime suicide attempts in the National Comorbidity Survey. Arch Gen Psychiatry. 1999;56(7):617–26.

    Article  CAS  PubMed  Google Scholar 

  6. Millner AJ, Ursano RJ, Hwang I, King AJ, Naifeh JA, Sampson NA, et al. Lifetime suicidal behaviors and career characteristics among U.S. Army soldiers: results from the Army study to assess risk and resilience in servicemembers (Army STARRS). Suicide Life Threat Behav. 2018;48(2):230–50.

    Article  PubMed  Google Scholar 

  7. Nock MK, Hwang I, Sampson NA, Kessler RC. Mental disorders, comorbidity and suicidal behavior: results from the National Comorbidity Survey Replication. Mol Psychiatry. 2010;15(8):868–76.

    Article  CAS  PubMed  Google Scholar 

  8. Ursano RJ, Heeringa SG, Stein MB, Jain S, Raman R, Sun X. Prevalence and correlates of suicidal behavior among new soldiers in the US Army: results from the Army study to assess risk and resilience in servicemembers (Army STARRS). Depress Anxiety. 2015;32(1):3–12.

    Article  PubMed  Google Scholar 

  9. Zelkowitz RL, Jiang T, Horvath-Puho E, Street AE, Lash TL, Sorensen HT, et al. Predictors of nonfatal suicide attempts within 30 days of discharge from psychiatric hospitalization: sex specific models developed using population-based registries. J Affect Disord. 2022;306:260–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ribeiro JD, Huang X, Fox KR, Franklin JC. Depression and hopelessness as risk factors for suicide ideation, attempts, and death: Meta-analysis of longitudinal studies. Br J Psychiatr. 2018;212(5):279–86.

    Article  Google Scholar 

  11. Van Orden KA, Witte TK, Cukrowicz KC, Braithwaite SR, Selby EA, Joiner TE Jr. The interpersonal theory of suicide. Psychol Rev. 2010;117(2):575–600.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nock MK, Millner AJ, Ross EL, Kennedy CJ, Al-Suwaidi M, Barak-Corren Y, et al. Prediction of suicide attempts using clinician assessment, patient self-report, and electronic health records. JAMA Netw Open. 2022;5(1):e2144373.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jiang T, Nagy D, Rosellini AJ, Horvath-Puho E, Keyes KM, Lash TL, et al. Suicide prediction among men and women with depression: a population-based study. J Psychiatric Res. 2021;142:275–82.

    Article  Google Scholar 

  14. Ursano RJ, Kessler RC, Stein MB, Naifeh JA, Nock PA, Fullerton CS, et al. Medically documented suicide ideation among U.S. Army Soldiers. Suicide Life Threat Behav. 2017;47(5):612–28.

    Article  PubMed  Google Scholar 

  15. Ursano RJ, Kessler RC, Stein MB, Naifeh JA, Aliaga PA, Fullerton CS, et al. Risk factors, methods, and timing of suicide attempts among U.S. Army soldiers. JAMA Psychiatry. 2016;73(7):741–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mash HBH, Ursano RJ, Kessler RC, Naifeh JA, Fullerton CS, Aliaga PA, et al. Predictors of suicide attempt within 30 days after first medically documented suicidal ideation in U.S. Army soldiers. Am J Psychiatry. 2021;178(11):1050–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Naifeh JA, Ursano RJ, Kessler RC, Zaslavsky AM, Nock MK, Dempsey CL, et al. Transition to suicide attempt from recent suicide ideation in U.S. Army soldiers: results from the Army study to assess risk and resilience in servicemembers (Army STARRS). Depress Anxiety. 2019;36(5):412–22.

    Article  PubMed  Google Scholar 

  18. Nock MK, Millner AJ, Joiner TE, Gutierrez PM, Han G, Hwang I, et al. Risk factors for the transition from suicide ideation to suicide attempt: results from the Army study to assess risk and resilience in servicemembers (Army STARRS). J Abnorm Psychol. 2018;127(2):139–49.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Study Replication. Arch Gen Psychiatry. 2005;62:617–27.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bolton JM, Belik S-L, Enns MW, Cox BJ, Sareen J. Exploring the correlates of suicide attempts among individuals with major depressive disorder: findings from the national epidemiologic survey on Alcohol and related conditions. J Clin Psychiatry. 2008;69(7):1139–49.

    Article  PubMed  Google Scholar 

  21. Stevens D, Wilcox HC, MacKinnon DF, Mondimore FM, Schweizer B, Jancic D, et al. Posttraumatic stress disorder increases risk for suicide attempt in adults with recurrent major depression. Depress Anxiety. 2013;30:940–6.

    PubMed  PubMed Central  Google Scholar 

  22. Ursano RJ, Colpe LJ, Heeringa SG, Kessler RC, Schoenbaum M, Stein MB. The Army study to assess risk and resilience in servicemembers (Army STARRS). Psychiatry. 2014;72:107–19.

    Article  Google Scholar 

  23. Kessler RC, Colpe LJ, Fullerton CS, Gebler N, Naifeh JA, Nock MK, et al. Design of the Army study to assess risk and resilience in servicemembers (Army STARRS). Int J Methods Psychiatr Res. 2013;22(4):267–75.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gahm GA, Reger MA, Kinn JT, Luxton DD, Skopp NA, Bush NE. Addressing the surveillance goal in the National Strategy for suicide Prevention: the Department of defense suicide event report. Am J Public Health. 2012;102(Suppl 1):24–S28.

    Article  Google Scholar 

  25. Hedegaard H, Schoenbaum M, Claassen C, Crosby A, Holland K, Proescholdbell S. Issues in developing a surveillance case definition for nonfatal suicide attempt and intentional self-harm using International Classification of Diseases, Tenth Revision, Clinical Modification (ICD–10–CM) coded data. National Health Statistics Reports. February 26, 2018 2018;108.

  26. SAS Institute Inc. SAS® 9.4 Software. Cary, NC: SAS Institute Inc.; 2013.

    Google Scholar 

  27. Hosmer DW Jr, Lemeshow S, Sturdivant RX. Model-building strategies and methods for logistic regression. In: Lemeshow DWH Jr, Sturdivant RX, editors. Applied Logistic Regression. 3rd ed. John Wiley & Sons, Inc.; 2013.

  28. Rothman K, Greenland S. Modern epidemiology. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 1998.

    Google Scholar 

  29. Ursano RJ, Kessler RC, Stein MB, Naifeh JA, Aliaga PA, Fullerton CS, et al. Suicide attempts in the U.S. Army during the wars in Afghanistan and Iraq, 2004–2009. JAMA Psychiatry. 2015;72(9):917–26.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ursano RJ, Kessler RC, Naifeh JA, Mash HH, Fullerton CS, Ng THH, et al. Suicide attempts in U.S. Army combat arms, special forces, and combat medics. BMC Psychiatry. 2017;17:194.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Naifeh JA, Mash HBH, Stein MB, Vance MC, Aliaga PA, Fullerton CS, et al. Sex differences in U.S. Army suicide attempts during the wars in Iraq and Afghanistan. Med Care. 2021;59:42–S50.

    Article  Google Scholar 

  32. Salk RH, Hyde JS, Abramson LY. Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychol Bull. 2017;143(8):783–822.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Foster SN, Hansen SL, Capener DC, Matsangas P, Mysliwiec V. Gender differences in sleep disorders in the US military. Sleep Health 2017; 3:336–341. J Nerv Ment Dis. 2008;196:29–36.

  34. Luxton DD, Skopp NA, Maguen S. Gender differences in depression and PTSD symptoms following combat exposure. Depress Anxiety. 2010;27:1027–33.

    Article  PubMed  Google Scholar 

  35. Schaffer A, Isometsa ET, Azorin J-M, Cassidy F, Goldstein T, Rihmer Z, et al. A review of factors associated with greater likelihood of suicide attempts and suicide deaths in bipolar disorder: part II of a report of the International Society for Bipolar Disorders Task Force on suicide in bipolar disorder. Aust N Z J Psychiatry. 2015;49(11):1006–20.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gonda X, Pompili M, Serafini G, Montebovi F, Campi S, Dome P, et al. Suicidal behavior in bipolar disorder: epidemiology, characteristics, and major risk factors. J Affect Disord. 2012;143:16–26.

    Article  PubMed  Google Scholar 

  37. Hawton K, Sutton L, Haw C, Sinclair J, Harriss L. Suicide and attempted suicide in bipolar disorder: a systematic review of risk factors. J Clin Psychiatry. 2005;66:693–704.

    Article  PubMed  Google Scholar 

  38. Torres ME, Lowe B, Schmitz S, Pienta JN, Van Der Feltz-Cornelis C, Fiedorowicz JG. Suicide and suicidality in somatic symptom and related disorders: a systematic review. J Psychosom Res. 2021;140:110290.

    Article  PubMed  Google Scholar 

  39. Davison W, Simberlund J. Somatic symptom disorder: costly, stressful for patients and providers, and potentially lethal. Am J Psychiatry Residents’ Journal. 2016;11(8):9–11.

    Article  Google Scholar 

  40. Foote B, Smolin Y, Neft DI, Lipschitz D. Dissociative disorders and suicidality in psychiatric outpatients. J Nerv Ment Dis. 2008;196(1):29–36.

    Article  PubMed  Google Scholar 

  41. Herzog S, Fogle BM, Harpaz-Rotem I, Tsai J, Pietrzak RH. Dissociative symptoms in a nationally representative sample of trauma-exposed U.S. military veterans: prevalence, comorbidities, and suicidality. J Affect Disord. 2020;272:138–45.

    Article  PubMed  Google Scholar 

  42. Tsai J, Armour C, Southwick SM, Pietrzak RH. Dissociative subtype of DSM-5 posttraumatic stress disorder in US veterans. J Psychiatr Res. 2015;66:67–74.

    Article  PubMed  Google Scholar 

  43. Franklin JC, Ribeiro JD, Fox KR, Bentley KH, Kleiman EM, Huang X, et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research. Psychol Bull. 2017;143:187–232.

    Article  PubMed  Google Scholar 

Download references


The Army STARRS Team consists of Co-Principal Investigators: Robert J. Ursano, MD (Uniformed Services University) and Murray B. Stein, MD, MPH (University of California San Diego and VA San Diego Healthcare System).

Site Principal Investigators: James Wagner, PhD (University of Michigan) and Ronald C. Kessler, PhD (Harvard Medical School).

Army scientific consultant/liaison: Kenneth Cox, MD, MPH (Office of the Assistant Secretary of the Army (Manpower and Reserve Affairs)).

Other team members: Pablo A. Aliaga, MA (Uniformed Services University); David M. Benedek, MD (Uniformed Services University); Laura Campbell-Sills, PhD (University of California San Diego); Carol S. Fullerton, PhD (Uniformed Services University); Nancy Gebler, MA (University of Michigan); Meredith House, BA (University of Michigan); Paul E. Hurwitz, MPH (Uniformed Services University); Sonia Jain, PhD (University of California San Diego); Tzu-Cheg Kao, PhD (Uniformed Services University); Lisa Lewandowski-Romps, PhD (University of Michigan); Alex Luedtke, PhD (University of Washington and Fred Hutchinson Cancer Research Center); Holly Herberman Mash, PhD (Uniformed Services University); James A. Naifeh, PhD (Uniformed Services University); Matthew K. Nock, PhD (Harvard University); Victor Puac-Polanco, MD, DrPH Nur Hani Zainal PhD (Harvard Medical School); Nancy A. Sampson, BA (Harvard Medical School); and Alan M. Zaslavsky, PhD (Harvard Medical School).


Army STARRS was sponsored by the Department of the Army and funded under cooperative agreement number U01MH087981 with the U.S. Department of Health and Human Services, National Institutes of Health, National Institute of Mental Health (NIH/NIMH). Subsequently, STARRS-LS was sponsored and funded by the Department of Defense (USUHS grant numbers HU00011520004 and HU0001202003). The grants were administered by the Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF). The contents are solely the responsibility of the authors and do not necessarily represent the views of the Department of Health and Human Services, NIMH, the Department of the Army, Department of Defense or the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.

Author information

Authors and Affiliations



HHM, RJU, RCK, JAN, CSF, and MBS contributed to the study concept and design. HHM, RJU, RCK, JAN, CSF, PAA, HMD, NAS, TCK, and MBS were involved in the acquisition and analysis or interpretation of the data. HM, RJU, RCK, JN, CS, and PA were involved in drafted the manuscript, and all authors contributed to critical revision of the manuscript for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Robert J. Ursano.

Ethics declarations

Ethics approval and consent to participate

This component of Army STARRS was approved by the Institutional Review Boards of the Uniformed Services University of the Health Sciences for the Henry M. Jackson Foundation (the primary grantee), the University of Michigan Institute for Social Research (site of the Army STARRS Data Enclave), University of California, San Diego, and Harvard Medical School, which determined that the present study did not constitute human participant research because it relies entirely on deidentified secondary data and no consent was needed.

Consent for publication

Not applicable.

Competing interests

In the past 3 years, Dr. Kessler was a consultant for Datastat, Inc., Holmusk, RallyPoint Networks, Inc., and Sage Therapeutics. He has stock options in Mirah, PYM, and Roga Sciences.In the past 3 years Dr. Stein received consulting income from Actelion, Acadia Pharmaceuticals, Aptinyx, atai Life Sciences, Boehringer Ingelheim, Bionomics, BioXcel Therapeutics, Clexio, EmpowerPharm, Engrail Therapeutics, GW Pharmaceuticals, Janssen, Jazz Pharmaceuticals, and Roche/Genentech. Dr. Stein has stock options in Oxeia Biopharmaceuticals and EpiVario. He is paid for his editorial work on Depression and Anxiety (Editor-in-Chief), Biological Psychiatry (Deputy Editor), and UpToDate (Co-Editor-in-Chief for Psychiatry). The remaining authors report nothing to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mash, H.B., Ursano, R.J., Kessler, R.C. et al. Predictors of suicide attempt within 30 days of first medically documented major depression diagnosis in U.S. army soldiers with no prior suicidal ideation. BMC Psychiatry 23, 392 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: